| Year 5 - Living things and their habitats | | | | | |--|---|--|--|--| | Lesson Intention National Curriculum Reference Scientific Rocket Words Resources | | | | | | Understand the life process of a plant | Describe the life process of reproduction in some plants and animals | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | reproduction
asexual
fertilisation
tuber
genes | Class presentation, rooting powder, pots, a healthy plant (strawberry, tomato, basil or chilli) and soil | | Understand the life cycles of mammals | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | pouch
mammary glands
placental mammal
monotreme mammal
marsupial | Class presentation and mammal types sorting cards | | Compare the life cycles of insects and amphibians | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | metamorphosis
caterpillar
amphibian
larva
pupa | Class presentation and split pins | | Understand the life cycle of birds and reptiles | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | egg
fledgling
egg tooth
hatch
embryo | Class presentation, eggs and toothpicks | | Know about the life and work
of Jane Goodall and David
Attenborough | Describe the life process of reproduction in some plants and animals | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | documentary
naturalist
primatologist
endangered
natural sciences | Class presentation and research devices (laptops/ipads) | | Research and present the life cycle of a creature | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Identifying scientific evidence that has been used to support or refute ideas or arguments | living organism
reproduction
life cycle
vertebrate
warm-blooded | Class presentation and research
devices (laptops/ipads) | | | 6734673447 | | | | | |--|---|--|--|---|--| | | Year 5 – Animals, including humans | | | | | | Lesson Intention | National Curriculum Reference | Scientific Enquiry | Rocket Words | Resources | | | Identify the key stages of a mammal's life cycle | Describe the changes as humans develop to old age | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | foetus
dependent
adolescent
puberty
reproduce | Scissors, handout (on thin card), pen
and pencils, split pins | | | Explore the gestation periods of mammals | Describe the changes as humans develop to old age | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | gestation
pregnant
duration
extreme
breeding | Sticky notes, scissors, pens/pencils,
computers/tablets for research | | | Learn about foetal development | Describe the changes as humans develop to old age | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | womb
umbilical chord
embryo
trimester
midwife | Pencil, graph paper, ruler, coloured pencils | | | Investigate the hand
span of different aged
children | Describe the changes as humans develop to old age | Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | growth spurt
childhood
motor skills
milk teeth
constant | Ruler, tape measure, pens/pencils,
paper | | | Learn about the changes experienced during puberty | Describe the changes as humans develop to old age | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | adolescence
puberty
hormones
mood swing
develop | Large paper/wallpaper, sticky tape,
pens/pencils | | | Describe the changes
humans may experience
during adulthood and
old age | Describe the changes as humans develop to old age | Identifying scientific evidence that has been used to support or refute ideas or arguments | lifestyle
keratin
elasticity
cataracts
neurodegenerative | Pens, pencils, computers/tablets | | | | Year 5 – Earth and space | | | | | |---|---|---|---|---|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words Covered | Resources Needed | | | Explore the solar
system and its
planets | Describe the Sun, Earth and Moon as approximately spherical bodies | Identifying scientific evidence that has been used to support or refute ideas or arguments Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | terrestrial planet
gas giant planets
Solar System
spherical
orbit | Class presentation, 9 balls (one for the Sun) and a measuring trundle | | | Understand the
heliocentric model
of the solar system | Describe the movement of the Earth and other planets relative to the Sun in the solar system | Identifying scientific evidence that has been used to support or refute ideas or arguments | astronomy
heliocentric
geocentric
dwarf planet
orbit | Class presentation, pictures of each
planet (from last lesson), newspaper, 9
balloons/balls, oill, PVA glue, a bowl,
water, paint, paintbrushes and string | | | Explain the Earth's movement in space | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | axis poles season hemisphere orbit | Class presentation, a torch, a globe,
playdoh and kebab skewers or cocktail
sticks | | | Explain the Earth's rotation and night and day | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Using test results to make predictions to set up further comparative and fair tests | sundial
time zone
gnomon
dial
shadow | Class presentation, card, scissors, a compass, glue, long wooden kebab skewers and time zone data | | | Explain the movement of the Moon | Describe the movement of the Moon relative to the Earth | Identifying scientific evidence that has been used to support or refute ideas or arguments | moon phase
waxing
waning
eclipse | Class presentation, pinwheel outlines,
scissors, split pins, a globe, golf balls
and a torch | | | Design a planet
using knowledge
gained | Describe the Sun, Earth and Moon as approximately spherical bodies | Reporting and presenting findings from enquiries | rocky planet
gas planet
moon
orbit
solar system | Class presentation, felt tips, coloured pencils, paint or digital media | | | | Year 5 – Forces | | | | | |--|---|--|---|---|--| | Lesson Intention | National Curriculum
Reference | Scientific Enquiry | Rocket Words | Resources | | | Explore gravity and
the life and work of
Isaac Newton | Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object | Identifying scientific evidence that has been used to support or refute ideas or arguments | Sir Isaac Newton
gravity
astronomy
weight
mass | 1m ruler/tape measure, weighing scales, variety of balls (tennis ball, soft ball, marble, hockey ball etc), pencil, 2 sheets of paper, stopwatch | | | Examine the connection between air resistance and parachutes | Identify the effects of air resistance, water resistance and friction, that act between moving surfaces | Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | Galileo Galilei
air resistance
opposing
streamlined
parachute | feather, tennis ball, small plastic toys/weights,
stopwatches, variety of materials to test (different types of
papers, plastic bags, bin bags, variety of materials),
rulers, hole punch, string, calculators | | | Explore factors which
affect an object's
ability to resist water | Identify the effects of air
resistance, water
resistance and friction,
that act between moving
surfaces | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | water resistance
streamlined
upthrust
buoyant
sink | small object (such as a marble, or penny), large clear
container filled with water, mini whiteboard, modelling
clay, water, variety of containers (such as large bottles
with the tops cut off, or large measuring cylinders),
weighing scales | | | Investigate the effects of friction on different surfaces | Identify the effects of air
resistance, water
resistance and friction,
that act between moving
surfaces | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | friction
resistance
lubricant
Newton meter
Newton | a variety of surfaces (different carpets or carpet tiles, variety of wooden floors, tarmac/playground surface), trainer, Newton meter, ruler, weight Alternatively, children could cover a plank of wood with different surfaces (such as sandpaper, a towel, tinfoil, lino, carpet, corrugated cardboard, bubble wrap etc.), squared paper | | | Investigate
mechanisms - levers
and pulleys | Recognise that some
mechanisms including
levers, pulleys and gears
allow a smaller force to
have a greater effect | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | lever
load
pivot
fulcrum
pulley | mini whiteboards, ball, a load to lift per child (weights/1 pint milk bottle/bag of sand etc.), materials to create a pulley - string, cotton reels, dowel, wheels, cardboard | | | Investigate
mechanisms - gears | Recognise that some
mechanisms including
levers, pulleys and gears
allow a smaller force to
have a greater effect | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | mechanism
gear
mesh
rack and pinion
bevel gear | strong cardboard, lolly sticks, paper straws, sticky tape,
thin dowel/cocktail sticks, plasticine, sticky tape, glue,
compass, scissors | | | | Year 6 – Light | | | | | |---|---|---|---|---|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry | Rocket Words | Resources | | | Explore how light travels | Recognise that light appears to travel in straight lines | Record data and results of increasing complexity using scientific diagrams and labels Identifying scientific evidence that has been used to support or refute ideas or arguments | light
eye
light source
symbol
scientific diagram | Torch, cardboard tube/a section of hosepipe/paper, card, hole punch, pen, pencil | | | Explore reflection | Use the idea that light travels in
straight lines to explain that objects
are seen because they give out or
reflect light into the eye | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | reflected
prediction
fair test
variable
table | Torch, white card, mirror, tin foil,
jumper/cardigan, carrier bag (try to
choose materials which are similar in
colour), pen, pencil | | | Explore reflection
and explain how it
can be used to help
us see | Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes | Identifying scientific evidence that has been used to support or refute ideas or arguments | periscope
angle
mirror
line of sight
utilise | Torch, cereal box, mirrors, scissors,
sticky tape, ruler, pencil | | | Investigate how
shadows can
change | Use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | shadow
block
opaque
transparent
translucent | Multilink, board marker, whiteboard, torch, ruler, pen, pencil | | | Investigate how we can show why shadows have the same shape as the object that casts them | Use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | plan
sun shade
real life problem
rotate
direction | Modelling clay, torch, cocktail
sticks, materials for making a screen,
pen, pencil, ruler | | | Investigate how we
see objects | explain that we see things because
light travels from light sources to our
eyes or from light sources to objects
and then to our eyes | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | optical
phenomena
disperse
spectrum
refraction | Water, washing up liquid, straw, glass
container, salt, bowl, paper, red, green
and blue pens, coloured filters, pencil | |