| Year 3 – Rocks | | | | | |---|---|---|--|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words Covered | Resources Needed | | Explore the formation and properties of igneous rocks | Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | igneous rocks
intrusive igneous rock
extrusive igneous rock
crystals
magma | Chocolate chips, coconut oil, ice cubes, cooking equipment (including a microwave or hob), caster sugar, golden syrup, bicarbonate of soda, a wooden spoon and a food container | | Explore the formation and properties of sedimentary and metamorphic rocks | Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | sedimentary rock
metamorphic rock
limestone
marble
sandstone | A selection of rocks to test, sandpaper, nails, small wooden spoons, water, pipettes, a bowl of water and a microscope or magnifying glass | | Weathering and the suitability of rocks for different purposes | Explore how and why [rocks] might have changed over time (non-statutory) | Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions | weathering
chemical weathering
physical weathering
biological weathering
acid rain | Vinegar, a pipette, a selection of different rocks and colouring pencils | | Explore how water contributes to the weathering of rocks | Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties | Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers | appearance
texture
submerged
erosion
receding | A variety of different rocks, bowls of water, weighing scales and a timer | | Understand how fossils are formed | Describe in simple terms how fossils are formed when things that have lived are trapped within rock | Identifying differences,
similarities or changes related to
simple scientific ideas and
processes | fossil
extinct
sediment
embedded
amber | Salt, flour, coffee grounds, cold coffee or water, a mixing bowl, a mixing spoon and objects to create imprints | | Explore different types of soil | Recognise that soils are made from rocks and organic matter | Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers | decompose
fragments
clay soil
chalky soil
sandy soil | Samples of different soils (for instance, peat soil, clay soil, sandy soil, silt soil, loam soil or chalky soil), beakers, a measuring cylinder, filter paper, a funnel, a teaspoon, a magnifying glass and pipettes | | Year 3 – Animals, including humans | | | | | |--|--|---|---|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words
Covered | Resources Needed | | Explore the 5 key food groups | Identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat | Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions | nutrition
carbohydrate
protein
vitamin
mineral | A selection of food for the class to sort into the 5 key food groups | | Learn about the nutrition in the food we eat | Identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat | Using straightforward scientific evidence to answer questions or to support their findings | nutrition label
portion
energy
balanced
diet | A range of food products containing nutrition labels | | Learn about the different types of skeletons | Identify that humans and some other animals have skeletons and muscles for support, protection and movement | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | vertebrate invertebrate endoskeleton exoskeleton hydrostatic skeleton | Scissors and glue (optional), research resources: books or internet | | Learn about the human skeleton | Identify that humans and some other animals have skeletons and muscles for support, protection and movement | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts and tables | humerus
ulna
radius
tibia
fibular | Scissors, glue and split pins | | Learn about animals and their skeletons | Identify that humans and some other animals have skeletons and muscles for support, protection and movement | Identifying differences, similarities or changes related to simple scientific ideas and processes | endoskeleton
vertebrate
skull
rib cage
spine | Scissors and glue | | Explore the role of muscles | Identify that humans and some other animals have skeletons and muscles for support, protection and movement | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables | muscle
contract
hamstrings
biceps
diaphragm | Split pins | | Year 3 – Light Unit | | | | | | |---|---|---|--|--|--| | Lesson Intention | National Curriculum
Reference | Scientific Enquiry Covered | Rocket Words
Covered | Resources Needed | | | Identify the difference
between light sources
and non light sources | Recognise that they need light in order to see things and that dark is the absence of light | Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions | light
source
natural
artificial
reflect | Glue and scissors | | | Explore the light that comes from the sun and how to stay safe | Recognise that light from the
sun can be dangerous and
that there are ways to protect
their eyes | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | vitamin D
ultraviolet rays
sunburn
exposure
protection | UV beads, a range of sun creams with at least 3 different SPF values, black paper, sticky tack and a plate | | | Explore materials which are reflective | Notice that light is reflected from surfaces | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | fluorescent
high visibility
reflective
surface
materials | Torches and a range of materials to investigate, such as tin foil, paper, wood, metal and fabric | | | Discover how shadows are formed | Recognise that shadows are formed when the light from a light source is blocked by an opaque object | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables | shadow
opaque
sundial
rays
blocks | Torch, opaque objects (enough for each child to have one), pencils and paper | | | Investigate how
shadows change
throughout the day | Find patterns in the way that the size of shadows change | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | position
cast
opposite
direction
length | Data from the shadow stick investigation, ruler and graph paper | | | Investigate how you can
change the size of a
shadow | Find patterns in the way that the size of shadows change | Identifying differences, similarities or changes related to simple scientific ideas and processes | size
shape
closer
further
puppet | Shadow puppet stage, lighting and handout with puppet silhouettes | | | Year 3 – Plants | | | | | |--|--|--|---|---| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words
Covered | Resources Needed | | Compare the effect of different factors on plant growth | Explore the requirements of plants for life and growth (air, light, water, nutrients from soil and room to grow) and how they vary from plant to plant | Asking relevant questions and using different types of scientific enquiries to answer them Setting up simple practical enquiries, comparative and fair tests | nutrients
fertiliser
nursery
potassium
stunted | Planting equipment, seeds | | Identify and describe the
functions of different parts of a
flowering plant and how they
are used in photosynthesis | Identify and describe the functions of different parts of a flowering plant | Making systematic and careful observations Reporting on findings from enquiries, including oral and written explanations | chlorophyl
stomata
xylem
photosynthesis
UV light | Onions and a glass of water | | Investigate the way in which water is transported within plants | Investigate the way in which water is transported within plants | Making systematic and careful observations | xylem
phloem
absorb
stomata
transpiration | Celery in dyed water (prepared 2 days before), cut flowers, water and dye | | Explore the part that flowers play in the life cycle of flowering plants | Explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | anther
stigma
style
filament
reproduction | Plasticine and a white board | | Understand the pollination process and the ways in which seeds are dispersed | Explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | pollination
pollen
nectar
seed dispersal
pollinator | Equipment so pupils can create a class display | | Compare the effect of different factors on plant growth | Explore the requirements of plants for life and growth (air, light, water, nutrients from soil and room to grow) and how they vary from plant to plant | Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions | germination
vulnerable
anchor
sapling
formation | Plants from the experiment | | Year 3 – Forces and magnets | | | | | |--|---|---|---|---| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words Covered | Resources Needed | | Explore contact and non-
contact forces | Notice that some forces need contact between 2 objects, but magnetic forces can act at a distance | Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions | force
contact force
non-contact forces
air resistance
friction | A range of PE and playground equipment | | Compare how things move on different surfaces | Compare how things move on different surfaces | Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers | motion
surface
resistance
texture
tilt | A toy boat (or wooden block), thick books, a stopwatch, a cardboard/wooden ramp, a selection of materials e.g. bubble wrap, cling-film, paper, felt and sandpaper (NB: any object can be timed moving down the ramp, but for a measurable effect, pick an object that slides - not rolls. Avoid toys with wheels or balls.) | | Explore different types of magnets | Describe magnets as having 2 poles
Predict whether 2 magnets will attract or
repel each other, depending on which
poles are facing | Setting up simple practical enquiries, comparative and fair tests | magnet
attract
repel
bar magnet
horseshoe magnet | Bar magnets and horseshoe magnets | | Explore the properties of magnets and everyday objects that are magnetic | Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials | Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables | magnetism
magnetic
magnetic field
iron
steel | A range of magnets and everyday classroom objects | | Understand that magnetic forces can act at a distance | Notice that some forces need contact between 2 objects, but magnetic forces can act at a distance | Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment | non-contact forces
magnetism
attract
non-magnetic materials
recycle | 5 different types of magnet,
paperclips, something to hold the
magnet, a thin thread, tape and a
ruler or tape measure | | Explore the everyday uses of magnets | Describe magnets as having two poles | Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers | compass
magnetic needle
magnetic north
direction
orienteering | Compasses, clipboards and writing tools |